Skip to Content

Dæmi 7. Neðra stig 1992-93

Gefnar eru $n$ tölur, ein er jöfn $1-\frac{1}{n}$ og hinar eru allar jafnar $1$. Hvert er meðaltal talnanna?

Dæmi 8. Neðra stig 1992-93

Ef $2^a+2^b=3^c+3^d$, hve margar heilu talnanna $a , b , c , d$ geta þá verið $\lt 0$?

Dæmi 3. Neðra stig 1992-93

Þegar grunnlína þríhyrnings er lengd um $10\%$ og hæð hans á grunnlínu er minnkuð um $10\%$, þá verður flatarmálið

Dæmi 4. Neðra stig 1992-93

Talan $\left(0,1 + \frac{1}{0,1}\right)^2$ er jöfn

Dæmi 1. Neðra stig 1992-93

Gildið á $6(12-3^2)-14$ er

Dæmi 3. Neðra stig 1991-92

Talan $\displaystyle\frac{\frac{3}{7} -1}{1-\frac{7}{3}}$ er jöfn

Dæmi 20. Neðra stig 1991-92

Talan $(1^2+3^2+5^2+\cdots+99^2)-(2^2+4^2+6^2+\cdots+100^2)+ (4+8+12+\cdots+200)$ er jöfn

Dæmi 4. Neðra stig 1991-92

Ummál rétthyrningsins, sem er sýndur hér, er

Dæmi 21. Neðra stig 1991-92

Á hversu marga vegu er unnt að skrifa töluna $135$ sem summu tveggja eða fleiri náttúrlegra talna í röð?

Dæmi 6. Neðra stig 1991-92

Ef talan $\displaystyle\frac{5(10^{12}-1)}{9}$ er skrifuð í tugakerfinu, hversu oft kemur tölustafurinn 5 fyrir?

Syndicate content