Skip to Content

Stærð horns í evklíðsku rúmi má tilgreina með bogamáli þess. Bogamál er rauntala og við táknum bogamál hornsins $\angle AOB$ með $|\angle AOB|$. Um bogamál gildir að

  • Eins horn hafa sama bogamál.

  • Ef $B$ er innaní horninu $\angle AOC$, þá er er $|\angle AOC|=|\angle AOB|+|\angle BOC|$.

  • Beint horn hefur bogamál $\pi$.

Af þessu leiðir að bogamál horns með miðju í einingarhringnum er jafnt lengd bogans sem það spannar.

Samband við gráðutal

Til er einfalt samband milli bogamáls og gráðutals. Til að breyta horni $\alpha$ sem mælt er í gráðum yfir í bogamál er notuð formúlan \[ \theta = \frac{\alpha}{180} \pi . \]

Dæmi:   Hvert er bogamál $30$ gráðu horns? Hægt er að setja töluna beint inn í formúluna, þá fæst \[ \theta = \frac{30}{180} \pi = \frac{\pi}{6} \]

Rúmfræði
Rúmfræði - framhaldsstig